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Abstract-In the course of an investigation of the nonlinear Fourier equation of heat conduction by a 
method of analytic continuation with respect to the temperature maximum y,,, as the continuation parameter, 
it is shown how positive majorants and positive minorants (which are defined to vary with the parameter y,) 
can be used to furnish continuous upper and lower bounds ofa function I(y,,) which governs the intensity of 
the generation of heat in the course of a certain exothermic process. The function %(y,) constitutes a 
characteristic property of the problem because it contains information as to the existence of stable, unstable 
and critical temperature distributions which result from the boundary-value problem of Fourier’s equation. 
In order to provide a test for the proposed method, continuous upper and lower bounds of i(ym) are derived 

for a Fourier problem of which the exact numerical solution is known. 

region in which the exothermic process 
takes place; 
boundary of C2; 

uniformly elliptic differential operator 
describing the heat transport within R; 
linear homogeneous operator describ- 

ing the heat transfer across the boun- 
dary r of 8; 
position vector of point in B + r ; 
temperature distribution in iz+ T’; 
maximum value of the temperature; 
symmetry-determined location of the 
temperature maximum ym; 
function representing the temperature 
dependence of the generation of heat in 
R (W, = a w/ay, y’ = ay/&s, j = ay/as); 
parameter governing the intensity of the 
heat generation given by W(y); 
eigenvalue and eigenfunction ; 
real continuation parameters; 
integral operator; 
kernel of 6 (Green’s function); 
minorant of W(y) on 0 5 y 5 y,; 
majorant of W(y) on 0 5 y 6 y,; 
tangent of W(y) at y,; 
secant of W(y) at ymn; 
parameter governing the intensity of the 
heat generation given by m( y, y,) ; 
parameter governing the intensity of the 
heat generation given by M(y, y,). 

1. INTRODUCTION 

THE STATIONARY thermal states of an open thermody- 

* Present address: DFV~R-Institut fiir Chemische An 
triebe und Verfahrenstechnik, 7101 ~ardthausen a.K. 

namic system evolving in an exothermic irreversible 
process are of considerable interest. The generation 
of heat in such a system may be caused by a homo- 
geneous exothermic chemical reaction [l] or may 
be due to electric [2] or viscous [3] resistance. A 
stationary thermal state of the system will occur if the 
heat produced within the system on account of the 
exothermic nature of the process is balanced by the 
heat transferred into the surroundings of the system. 

Let Q designate the region occupied by the thermo- 
dynamic system, with r designating the boundary of 
&I. Then the stationary thermal state of the system is 
characterized by a temperature dist~bution y which 
results as the solution of the following, usually strongly 
nonlinear boundary-value problem of Fourier’s 
equation : 

L(y) + AW(y) = 0 on R, 

ii(y) = 0 on r. (1) 

Here, f. designates the uniformly elliptic differential 
operator connected with the heat transport within R, s 
designates a linear homogeneous operator describing 
the heat transfer across the boundary I- of 51. The 
generation of heat in n which is due to the exothermic 
nature of the thermodynamic process under con- 
sideration, is designated by the expression 1W(y) 

depending on the temperature y and on a real para- 
meter I(E, 2 O), which is to represent the 
experimenter’s control of the intensity of the gcner- 
ation of heat. From these definitions derives the 
following property of W(y): 

W(y) > 0 for y 2 0. (21 

For the operators f; and ii, the usual assumptions are 
made [4-61, such that the maximum principle holds 
[7], whereby the solutions y of equation (1) are 
positive on Q, and such that for a solution (yo,&) of 
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(I), the derived operator 

(i + &W,(Y,,> 6) 

constitutes a Fredholm operator [6]. 

(3) 

With these assumptions made, the solution of 

problem (1) may be derived with various methods (see 
[S] for a list of references). On account of the nonlinear 

dependence of W on Y, one finds it difficult (excepting a 
few rare cases, camp. [17]) to derive exact solutions 

(y, i) of (1). But before embarking on some difficult 
mathematical deliberations, it seems to be advisable to 
recall a physical fact which is of importance in 

connection with problem (1) : because of an incomplete 

theory of the physical phenomenon under investi- 

gation, the boundary conditions embodied in i(Y) = 0 
on I represent a drastic approximation (e.g. Newton’s 

law of cooling) and usually the same holds for the 
function W(y) representing the generation of heat. 

W(Y) may have even been found by interpolation from 

empirical data. It is therefore to be expected that the 
given function W(Y) represents the generation of heat 

approximately and only on a finite temperature in- 
terval 0 5 Y 5 _v. Thus it seems to be well worth trying 

to find a simple approximation method by which the 
salient features of the solutions of problem (1) (e.g. 

existence, stability, criticality, etc.) are preserved and 

by which the solutions of problem (1) are restricted 

from the start to the interval where W(y) is known. In 
the following text, such an approximation method is 
proposed which has already been applied to a few 
examples by this author [S, 91. The method applies to 

problem (1) irrespective of whether i is in the form of 
an ordinary or a partial differential operator and it 

consists in finding the solutions of appropriately 

defined soluble boundary value problems related to 
problem (1). 

2. THE TEMPERATURE MAXIMUM DEFINED AS 
THE CONTINUATION PARAMETER 

Quite often, the experimenter is able to select the 
shape of the boundary T and to impose a heat transfer 

across I such that the symmetry of the boundary- 
value problem (1) fixes the position of the maximum y,,, 
of the temperature distribution y on R + I (e.g. camp. 

[l] and [lo], where a list of symmetric boundary 
shapes may be found). It is then possible to consider y, 
as an independent parameter whereby the solutions of 
problem (1) result in the following parametric repre- 
sentation (e.g. camp. [ 11) : 

(Y(X.Y,)> n(Y,)). (4) 

Here, x designates a position in Cl + I. If x,, represents 
the symmetry determined position of the maximum Y,,, 
of the temperature distribution Y, then one must have : 

Ye%, 4’m) = I’,. (5) 

Let (yO, A,,) be a solution of problem (1) and let p0 be 
the principal eigenvalue [5] of the boundary-value 
problem of the linear derived operator given by 
equation (3) : 

Qcp) + AJ~,(YrJ)cp + Pep = 0 on Cl, 

B(cp) = 0 on r. (6) 
Then there exists a single eigenfunction ‘pO related to 

the principal eigenvalue p,, and cpO does not change its 
sign on R. If PO > 0, then ( yO, &) is a stable solution, if 
p0 < 0, then (yO,&) is an unstable solution and if 
p,, = 0, then (~a,&,) is a critical solution (a critical 

point) of problem (1) (camp. [S]). A critical point of 

problem (1) represents a particular branching point of 
(1) in that a critical point separates a branch of stable 

solutions from a branch of unstable solutions, whereas 

an ordinary branching point separates branches of 
unstable solutions of (1). It is perhaps worthwhile 

stating that unstable stationary temperature distri- 
butions may never be obtained in an experiment. A 

stable or a critical solution of problem (1) may be 
analytically continued (uniquely) with respect to the 

parameter y, by the perturbation method proposed in 
[ 111, by defining t: as the perturbation parameter : 

t: = 4‘, - yrno (7) 

with Y,, designating the maximum of ye. The function 

A( y,) may be seen as a ‘response function’ of the system 
[8,9]. A critical solution of problem (1) is connected 

with an extremum of i(y,,,) but the inverse of this 
proposition does not necessarily hold (camp. [12] and 

the discussion of Steggerda’s results by [l]). The 
application of the perturbation method proposed by 
[ 111 furnishes the continuation of a given solution 
(yO,&) with respect to E given by equation (7) in the 
following form : 

y(x.c-:) = Y,(X) + Y(x)c + $ji(X)EI + 

l(E) = R, + A: + +x2 + . (8) 

It is easily derived that for a stable solution (yO,i,) 
holds that: 

J; > 0, i>O (9) 

and that for a critical solution (YO,&) holds that 

3 > 0, ;; = 0. (IO) 

This perturbation theory has been worked out com- 
pletely elsewhere [13]. 

Because of the definition of the linear operators L 

and i$ one obtains for 1, = 0 the unique stable 
solution y, = 0 of problem (1) and (YO = 0, & = 0) 
may be continued with respect to y,. Therefore, the 
function i(y,) consists of at least one branch emerg- 

ing from 1, = 0, y,, = 0 such that this branch corres- 
ponds to a branch of stable solutions of (1). If a critical 
point exists for this branch, then it corresponds to a 
maximum of l(Y,), 

3. POSITIVE MINORANTS AND MAJORANTS 

OF WY) 

For the introduction of minorants and majorants of 
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W(Y), the following nonlinear boundary-value prob- (camp. [7]). It is therefore obtained for the first order 
lem turns out to be of interest: (16a): 

L(Y) + W(Y) + MY)) = 0 on Q, 

E(y) = 0 on I-. (II) 

Here, A. and S are real parameters, i and i are the 
same linear operators as in problem (1)$(y) and g(Y) 
are two real valued functions which-for the sake of 
the perturbation method-are supposed to be analytic 
in Y. For A and 6, it is supposed to hold that: 

Y’(X) = - G{&s(Yo) + ii’(f(Y0) f &&I(Ycl));(x). 

(20) 

A’ is then determined by the constraint (17) as: 

Because of the negativity of the kernel of 6 and because 
of (13), one finds : 

i,ZO OSSjl, (12) 

f(Y) + 6g(y) > 0 for 0 5 6 5 1, y 2 0. (13) 

Let (ya, A,,&) be a solution of problem (11). On 
account of the maximum principle [7], one finds that: 

Y, >O on Q y,ZO on R+I- (14) 

and that y0 does not have a minimum on Cl so that Y, 
possesses a unique maximum ymo on Q + I. In the 
following derivation, 6 is considered an independent 
parameter of problem (11) and the solution (Y, i,,, 6,) is 
analytically continued with respect to (6 - 6,). De- 
signating the differentiation with respect to 6 by 
dashes, e.g. : 

G(f(Yo) + dog) < 0 on Q. (22) 

The higher order contributions for the series expan- 
sion ofy and 1 with respect to (6 -6,) can be found in a 
similar fashion, If (YO,Ao,So) represents a critical 
solution of (1 I), then the principal eigenvalue of the 
operator pair (19) vanishes and the related eigenfunc- 
tion u0 does not change sign on R. The value of I’ is 
fixed such that the first order problem (16b) can be 
solved : 

’ = - fn dx uotf(ro) +6,go)’ (231 

The integral in the denominator of (23) is nonvanish- 
ing on account of u. # 0 on R and on account of (13). y’ 
obtains from equation (16b) as : 

Y’ = - G(%S(Yo) 

y ~ ?: ., _ ai 
a6 *=*,,’ n =&j R=60 etc. (15) 

one obtains the following recursive system of 
boundary-value problems by inserting in (11) the 
series expansions in (6 - 6,) of y and i: 

zeroth order 

&Y~) + ~~(~(Y~) + &gtYO)) = 0 on Q, 

&Y,) = 0 on I (16a) 

first order 

QY’) f Mf,(Yo) + &&(Yo))Y + AAY,) 

+ ;.‘(f(yJ + 6&Y,)) = 0 on Q, 

B(y’) = 0 on r. (16b) 

The higher orders of the perturbation system may be 
obtained in the usual fashion. Because of the symmetry 
of problem (1 l), the maximum y, of the solution y is 
located at the position x0. The following constraints 
are imposed on (Y, A, 6) : 

y’(x,f = 0, y”(X,) = 0, . . . 07 

whereby : 

Y(X,, 6 - &J = Y&o) = Y&l, 01 = Ymo. (18) 

If (Yo, Ao, 6,) represents a stable solution of (1 l), then 
there exists a bounded integral operator G which is the 
inverse of the linear operator 

0%) + MS,(Yo) + &C?,(Yc& W) (19) 

which occurs in any order (#O) of the perturbation 
system (16). If G(x,xt) is the kernel of G, then 
G(x, x?) < 0 for any pair of values x, X+EQ 

+J.‘(~(Y~) + d,g(Y,))) + cue. (24) 

The kernel of G is a generalization of Green’s function. 
The constant c in the expression (24) is determined by 
the constraint (17) : 

The higher order contributions for the series expan- 
sion ofy and R with respect to (6 -6,) can be found in a 
similar fashion, 

The analytic continuation by regular perturbation 
with respect to the maxrmum y, of the temperature y 
on Q + I makes it possible to investigate for a given 
value of y, appropriately defined functions which are 
minorants or majorants of W(Y) on the interval 0 5 y 
5 Y, only. Returning to the original problem (l), let 
W(y) be a function which is known for values of Y 
with 0 5 Y s 4:. For a given maximum value frrn with 
0~ y, SY, the functions m(Y,y,) and M(y,y,) are 
called positive minorant and positive majorant of 
W(y) on the interval 0 I v 5 ?I,,,, if the following -, 
inequality holds : 

0 < rn(Y,Y,) 5 WY) 5 M(Y,Y,) 

for 0 5 y 5 Ym. (26) 

m(y, y,) and M(y, y,) are chosen such that the follow- 
ing boundary-value problems [camp. (l)] have 
unique positive solutions : 

E(u) + &p(v, ym) = 0 on Q, 
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B(u) = 0 on r, (271 

G) + &&f(%Y,) = 0 on R. 

B(u) = 0 on 1-. (28) 

Here, A,,,( y,) and iM( y,) are determined by the follow- 
ing conditions : 

max a(x) = 0(x0) = Ym, 
XEn+r 

(29) 

max u(x) = u(xO) = Y,. 
XEo+r 

(30) 

By varying the parameter Ym, varied minorants 
m(Y,y,,J and majorants M(Y,y,) result and one thus 
obtains functions A,(y,) and &(y,). The following 
section is devoted to investigating the relation of the 
functions A,(y,) and &,(Y,,J to the function J.(y,l 
which is the response function of the thermodynamic 
system and part of the parametric representation (4) of 
the solution (Y, A) of problem (1). 

For a given y,, let it be defined on 0 2 Y 5 Y,,, that : 

f(Y) = dY,Y,), 

9(Y) = WY1 - NKY,) 2 0. (311 

Then one obtains for any 6 with 0 5 6 s 1: 

f(Y) + MY) 

= (l-&)m(y,y,) + &V(y) > 0. (32) 

Thus, condition (13) is satisfied. For a S, with 0 5 6, 
$ 1, let (y,,&,&,) be a stable solution of (11). Then 
one obtains on account of the negativity of the kernel 
of G and on account of equations (31) and (32) from 
(21): 

i’ 5 0. (33) 

If (Ya, A,,, 6,) designates a critical solution of (11) for a 
6, with 0 5 6, 5 1, then one derives from (23) on 
account of (31) and (32) and on account of u0 # 0 on 
R: 

A’ 5 0. (34) 

For 6,, = 0, the solution (u,&,(y,)) of (27), (29) is 
obtained, for 6, = 1, the solution (y,l.(y,)) of (1) 
results. If analytic continuation from (v,A,(y,)) to 
(y,A(Y,)) is possible from 6 = 0 to 6 = 1 and if this 
path leads through stable solutions of (I 1) only or if it 
stays close to critical solutions of (1 l), then one obtains 
from (33), (34): 

~5AY,, 2 i;(Y,). (35) 

For the given value of y,,,, let it now be defined on 
05y5yy,that: 

f(Y) = M(Y,Y,l, 

Y(Y) = WY) - M(Y,Y,) 5 0. (36) 

Then the following property is found to hold for 
066Sl: 

f(Y) + &J(Y) = (I--6W(Y.Y,) + swvt > 0. (37) 

By virtue of (371, condition (13) is fulfilled. For 0 5 6,) 

5 1, let (yO, &, 6,) be a stable solution of (11). Then 
one obtains on account of the negativity of the kernet 
of 8 and on account of (36), (37) from equation (21): 

i.’ 2 0. - (38) 

If (ye, A,,, S,) designates a critical solution of ( I 1) for 0 
5 6, 5 1, then one derives from equation (23) on 
account of (36), (37) and on account of u,, f 0 on 52: 

i,’ 2 0. (39) 

For 6, = 0, the solution (~,~~~~~~~~ of (2X), (30) is 
obtained, for So = 1, the solution (Yrh(Ym)) of (1) 
results. If analytic continuation is possible from 5 = 0 
to 6 = 1 and if this path leads through stable solutions 
of (11) only. or stays sufficiently close to critical 
solutions of (1 I), then one obtains from (38), (39): 

&(Y,) 5 j.(Y,). (40) 

By varying Y,,, continuously from Y,,, = 0 till Ym =J’ and 
by varying the minorants m(Y,Y,) and the majorants 
M(y,Y,,J in a continuous fashion with respect to their 
dependence on Ym accordingly, one obtains under the 
above assumptions continuous functions i.,(y,) and 
f+J Y,,J which provide upper and lower bounds of ;_( Y,) 
for any value Ytn with 0 I r < V: --.m--. 

&(YA 5 j.(r,l 5 MY,). (41) 

4. LINEAR POStTIVE MINORANTS AND 
MAJORANTS 

Functions m( Y, Y,,,) and M(Y, Y,) which are linear in 
Y on 0 5 Y 5 Y,,, and which satisfy equation (26) are of 
particular importance because for linear functions, the 
problems (27) and (28) can be solved by standard 
methods, irrespective of whether i is in the form of an 
ordinary or a partial differential operator. In order to 
define a pointwise scanning of the given function W(Y) 
of problem (1) by positive linear minorants and 
majorants. the following additional property is 
imposed : 

d”v,,.v,) = WY,) = J+f(J’m,!‘m). (42) 

It is by virtue of equation (42) that for a given value of 
JJ,, 0 < Y 5 V a linear minorant and a linear ma- .m-.. 
jorant of W(y) on 0 5 Y 5 y, can be found which- 
while satisfying equation (26).--~ are unique in being 
the closest to W(Y). The geometrical construction of 
the closest linear minorant and the closest linear 
majorant for the given value of Y, is straightforward if 
the graph of W(Y) is given. so that for the construction 
of the functions A,&,) and i.,&v) the actual analytical 
expression of W(Y) does not need to be at hand (camp. 
[8] for examples). 

In order to provide an example of how A,(y,) can be 
constructed, let it be assumed that W(Y) is a mono- 
tonely increasing function in Y with W(y)>0 for 0 
5 y 5 J;. Let ym be given with 0 < Y,,, 2 I;. Then it is 
possible to find a constant positive majorant M(y.y,) 
= W(y,), which satisfies (26) and (42). Subtracting 
eqution (28) from (I), one obtains, on account of the 
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linearity of i and i: 

t(u-y) + 1,W(y,) - i.W(y) = 0 on !A, 

&u-y) = 0 on F. (43) 

Let the symmetry defined position x0 of the maximum 

y,,, ofy and u be an interior point. Imposing (5) and (30) 
in order to obtain A(y,) and ,IW(y,,,), one finds at the 

interior point x0 6 CA : 

00) - Y(%) = 0, 

W(y) being increasing in y, one derives that : 

(44) 

WY) 5 WY,) for 0 5 y s y,. (45) 

On account of the maximum principle for elliptic 

operators [7], it is then deduced that one must 

necessarily have : 

Mym) 5 I.(Y,). (46) 

By varying y,,, between y, = 0 and y, = 4: one is thus 

able to derive a continuous function iM(ym) which 

provides a lower bound of I.(y,) for any y,,, with 

0 I ym 5 y. 
For a function W(y) with W(y) > 0 in 0 5 y 5 j, it 

is possible to find a linear ‘closest’ majorant M(y,y,) 

for any value of y, with 0 < y, 5 y, such that M( y, y,) 
satisfies equations (26) and (42). For a function W(y) 

with W(y) > 0 in 0 5 y 5 y, there always exists a 
subinterval such that a positive linear minorant 

m(y,y,) exists for any y,,, from this subinterval, while 

m(y,y,) satisfies (26) and (42). The tangent r(y,y,) of 
W(y) for y = ym results as: 

r(Y?Y,) = (Y -YmW,.(Ym) + WY,). (47) 

For a function W(y) with W(y) > 0, there always 
exists an interval 0 5 y, 5 y*, y* 5 y, such that the 

tangent t(y,y,,,) [camp. (47)] for any ym with 0 5 y, 5 
y* intersects the W-axis for a positive W-value: 

TY,) - Y,W,(Y,) > 0 for 0 5 Y, 5 Y*. (48) 

For y, with 0 < y,,, 5 y*, then there exists-by in- 

spection-a linear closest positive minorant satisfy- 

ing (26) and (42). On account of the property (48) the 
function W(y) may be called ‘concave in a generalized 

sense’ [camp. [ 1411 for 0 6 y 5 y* and it may be shown 
that for a maximum y, with 0 < y, 5 y*, the solution 
of equation (1) exists and is stable. 

Thus, for y,,, with 0 5 y, s y*, linear positive 
majorants M(y,y,,,) and linear positive minorants 

m(y, y,) of W(y) exists and it is easily seen that the 

function (1 - 6)m( y, y,) + W(y) [camp. (32)] and the 
function (1-&M(y,y,) + W(y) [camp. (37)] are 
concave in the sense of (48) for 0 5 6 5 1. It is therefore 
concluded that the expression (41) holds for any y, 
with 0 5 y, s y*, y* s y, i.e. that the expression 

holds on the interval 0 5 y, 5 y*, where the function 
W(y) is concave in the sense of equation (48). 

Yf Y fT 
- 

Y 

FIG. 1. Positive minorants and majorants of the function 
W(y) = exp(y). 

5. A NUMERICAL EXAMPLE 

In order to give a demonstration of how the 
proposed method of approximation applies, the fol- 
lowing problem is investigated : 

2 + i 2 + 1 exp(y) = 0, 

y(1) = 0, Y(0) = y, (49) 

dy 
dx x=,, 

= 0. 

For this problem, a solution exists in the parametric 

form (4) which has been derived numerically by [12, 
151. By using their result, it is possible to test the con- 
tinuous upper and lower bounds &,,(y,) and A,(y,) 
which derive from the introduction of appropriate 

minorants and majorants. The function W(y)=exp(y) 
is concave in the sense of (48) for y with 0 5 y < y* 
= 1, so that for a given y, with 0 < ym < 1, uniquely 
defined linear minorants and majorants exist which 

satisfy (26) and (42) and which are ‘closest’ to W(y). 
Specifically, the closest linear majorant is the secant 
s = s(y, y,) passing through W = 1 and W(y,) = 

exp(y,), whereas the closest linear minorant is the 

tangent t = t(!; y,,,) for W(y) for y = y,,, (camp. Fig. 1). 

The problems (27) and (29) and (28) and (30) may be 

solved with m( y, y,) = t( ); y,), M( J’. y,) = s( y, y,) and 
the resulting bounds are designated &,,(y,) ‘tangent’ 

and &(y,,,) ‘secant’ and may be compared with the 
exact solution designated I.(_y,) ‘exact’ (camp. Fig. 2). 

For y, 2 y*, the curve E,,(y,) ‘tangent’ is parallel to 
the y, axis and defined by the value I,* derived from 
the tangent t* in Fig. 1 (camp. [16]). 

W(y) = exp( y) is monotonely increasing in y. Thus, 
constant linear majorants M(y, y,) = exp( y,) may be 
used in problem (28), (30) to give a curve of bounds 
designated ;.M(ym) ‘constant’ in Fig. 2. By using the 
results of [17] for Emden’s equation, convex nonlinear 
minorants m( y, y,) = ( y’/yi)exp( y,) (marked m(y, y,,) 
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FIG. 2. The exact solution i(y,) and the continuous upper and lower bounds i&v,) and &,(yn), 

‘convex’ in Fig. 1) may be introduced for the de- 
rivation--by similarity methods-of improved upper 
bounds which are marked I,&,,,) ‘convex’ in Fig. 2. 

Finally, it should be emphasized that stable so- 
lutions of problem (49) occur only for values of y,,, 
between y, = 0 and y, = 160 746, which is related to 
the first maximum of the response curve A(y,) (camp. 
[ 123). If one recalls that only stable or critical soiutions 
of problem (1)are of physical interest, Fig. 2 shows that 
the proposed method of approx~matjon provides good 
bounds for the physically interesting part of J.(y,). In 
particular, good bounds are obtained by a relatively 
simple method for the criticai values of the parameter I 
(marked Acrir in Fig. 2), which are of considerable 
interest (e.g. Frank-Kamenetzki’s theory of thermal 
explosions, camp. [9,1 PI). 
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UNE METHODE ~APPROXIMATION MINORANTE-MAJORANTE 
POUR LA SOLUTION DE L’EQUATION DE FOURIER 

NON LINEAIRE 

R&m&Dam une etude de l’equation non lineaire de Fourier par une mtthode analytique bake sur la 
temperature maximale y, comme parambtre de continuation, on montre comment des majorants positifs et 
des minorants positifs (qui varient avec y,) peuvent etre utilises pour fournir des limites continues supkieures 
et inferieures dune fonction ji(y,) qui gouverne l’intensite de la generation de chaleur au tours d’un certain 
processus exothermique. La fonction k(y,) constitue une proprieti caracteristique du probltme car elle 
contient l’information d’existence de distribution de temperature stable, instable ou critique qui resulte du 
probleme des conditions aux limites de I’equation de Fourier. De faGon B fournir un test de la mithode 
proposee, des limites continues superieure et inferieure de i.(y,) sont obtenues pour un probltme dont on 

connait la solution numerique. 

Zusammenfassung-Untersucht man die nichtlineare Fouriersche Gleichung der Warmeleitung mit Hilfe 
der Methode der analytischen Fortsetzung, so lll3t sich die maximale Temperatur ynr als Fortsetzungsparam- 
eter wahlen. Dann lassen sich von y,,, abhangende positive Majoranten und positive Minoranten einfiihren, 
durch welche in y, stetige obere und untere Schranken einer Funktion I(y,) bestimmt werden, die die 
Intensitlt der Warmeerzeugung fiir die untersuchten exothermen Prozesse steuert. Die Funktion I(y,) stellt 
eine charakteristische GrGBe des Problems dar, da sie Aussagen enhalt iiber die Existenz stabiler, instabiler 
und kritischer Temperaturverteilungen, welche man als Losungen des Randwertproblems der Fourierschen 
Gleichung erhllt. Urn die Giite der vorgestellten Methode zu demonstrieren, werden in y, stetige obere und 
untere Schranken von Afy,,,) fur ein Fouriersches Problem berechnet, dessen exakte numerische Losung 

bekannt ist. 

IIPIIMEHEHIIE METOJIA M~HOPAHTHbIX-MA~OPAHTH~IX AIIIIPOKCRMAIDII? 
IIPII PEIIIEHRII HEJIIIHEfiHOI-0 YPABHEHkIIf @YPbE 

AHHOT~UHS- IlpH aHam3e HemHelHoi-0 ypaBHeHm Tennonp0eommcTa cPypbe Meronohr auanurri- 
qec~or0 npononrtenna c h4akcnMyMot.9 rebmeparypbr y, B xaqecrae napaMerpa npononmeHm noKa- 

3aH0, KaKHM 06pa30~ nOJIOmBTenbHbIe MagOpaHTbI H MWHOpaHTbI, U3MeHIIIOIWieCR C H3MeHeHWM 

IlapaMeTpa ,',, MOXHO HCIlOJIb30BaTb ilnll OnpelIeneHH,, HenPepbIBHbIX BepXHHX B HWKHHX rpaHHU 

I$YHKUHH %(y,), omicbmafo~efi mTewmx0cTb TennoBbtneneHm B pe3ynbTaTe HeKoTop0ro 3K30- 

TepMsrecKoro npouecca. @yHxUm i(y,) conepxmfT mi@opMaUm2 0 uanmniu ~cToF~~HBo~~. He- 

yCTOfiWBOr0 H KpHTHreCKOrO pW,peZleJIeHHii TeMnepaTypbI, IlOJlyYeHHbIX IIpH peUIeHHH TpaHH4HOil 

3anaw ana ypaBHener Qypbe. fins npoaepxs npenno~easoro MeTona onpeneneIib1 HenpepbnmbIe 

Bepxsfse ~HHW~HH~~~~HH~~~~YHKUI~W I(y,)sanara Qtypbe, mui ~0~0~06 meeTcf4 T09Hoe ~tfcneuuoe 
pemeaee. 


