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Abstract—In the course of an investigation of the nonlinear Fourier equation of heat conduction by a
method of analytic continuation with respect to the temperature maximum y,, as the continuation parameter,
it is shown how positive majorants and positive minorants {which are defined to vary with the parameter y,,)
can be used to furnish continuous upper and lower bounds of a function A(y,,) which governs the intensity of
the generation of heat in the course of a certain exothermic process. The function A(y,,) constitutes a
characteristic property of the problem because it contains information as to the existence of stable, unstable
and critical temperature distributions which result from the boundary-value problem of Fourier’s equation.
In order to provide a test for the proposed method, continuous upper and lower bounds of 4(y,,) are derived
for a Fourier problem of which the exact numerical solution is known.

NOMENCLATURE

Q, region in which the exothermic process
takes place;

I, boundary of Q;

L, uniformly elliptic differential operator
describing the heat transport within Q;

B, linear homogeneous operator describ-
ing the heat transfer across the boun-
dary I of Q;

X, position vector of point in Q+1T;

y{x), temperature distribution in Q+17;

Yoo maximum value of the temperature;
Xo» symmetry-determined location of the
temperature maximum y,,;

W(y), function representing the temperature
dependence of the generation of heat in
Q(W, = oW/dy,y = dy/8,3 = Oy/0e);

A parameter governing the intensity of the
heat generation given by W(y);

e, eigenvalue and eigenfunction;

&0, real continuation parameters ;

G, integral operator;

G(x,xt), kernel of G (Green’s function):

m{y,y,), minorantof W(y)on0 <y = y,.:

M{y,yn), majorantof W(y)on0 £y £ y,;

1y, ym),  tangent of W(y}at y,,;

s(y, ym),  secant of W(y) at y,,;

s parameter governing the intensity of the
heat generation given by m(y, y,,);

Arts parameter governing the intensity of the

heat generation given by M(y, y,,).

1. INTRODUCTION
THE STATIONARY thermal states of an open thermody-
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namic system evolving in an exothermic irreversible
process are of considerable interest. The generation
of heat in such a system may be caused by a homo-
geneous exothermic chemical reaction {1} or may
be due to electric [2] or viscous [3] resistance. A
stationary thermal state of the system will occur if the
heat produced within the system on account of the
exothermic nature of the process is balanced by the
heat transferred into the surroundings of the system.

Let Q designate the region occupied by the thermo-
dynamic system, with " designating the boundary of
1. Then the stationary thermal state of the system is
characterized by a temperature distribution y which
results as the solution of the following, usually strongly
nonlinear boundary-value problem of Fourier’s
equation:

0 on Q,

(1)

Here, L designates the uniformly elliptic differential
operator connected with the heat transport within Q, B
designates a linear homogeneous operator describing
the heat transfer across the boundary I' of Q. The
generation of heat in Q which is due to the exothermic
nature of the thermodynamic process under con-
sideration, is designated by the expression AW(y)
depending on the temperature y and on a real para-
meter A4 =0), which is to represent the
experimenter’s control of the intensity of the gener-
ation of heat. From these definitions derives the
following property of W(y):

W(y) >0

on I

for y=0. )

For the operators L and B, the usual assumptions are
made [4-6], such that the maximum principle holds
[7]. whereby the solutions y of equation (1) are
positive on {, and such that for a solution {yo, 4o} of
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(1), the derived operator

(L + 2W,(yo), B) (3)

constitutes a Fredholm operator [6].

With these assumptions made, the solution of
problem (1) may be derived with various methods (see
[5] for a list of references). On account of the nonlinear
dependence of W on y, one finds it difficult (excepting a
few rare cases, comp. {17]) to derive exact solutions
(y,4) of (1). But before embarking on some difficult
mathematical deliberations, it seems to be advisable to
recall a physical fact which is of importance in
connection with problem (1): because of an incomplete
theory of the physical phenomenon under investi-
gation, the boundary conditions embodied in B(y) =0
on I represent a drastic approximation (e.g. Newton’s
law of cooling) and usually the same holds for the
function W(y) representing the generation of heat.
W(y) may have even been found by interpolation from
empirical data. It is therefore to be expected that the
given function W(y) represents the generation of heat
approximately and only on a finite temperature in-
terval 0 £ y < . Thus it seems to be well worth trying
to find a simple approximation method by which the
salient features of the solutions of problem (1) (e.g.
existence, stability, criticality, etc.) are preserved and
by which the solutions of problem (1) are restricted
from the start to the interval where W(y)is known. In
the following text, such an approximation method is
proposed which has already been applied to a few
examples by this author [8,9]. The method applies to
problem (1) irrespective of whether L is in the form of
an ordinary or a partial differential operator and it
consists in finding the solutions of appropriately
defined soluble boundary value problems related to
problem (1).

2. THE TEMPERATURE MAXIMUM DEFINED AS
THE CONTINUATION PARAMETER

Quite often, the experimenter is able to select the
shape of the boundary I" and to impose a heat transfer
across I' such that the symmetry of the boundary-
value problem (1) fixes the position of the maximum y,,
of the temperature distribution y on Q+ 1T (e.g. comp.
[1] and [10], where a list of symmetric boundary
shapes may be found). It is then possible to consider y,,
as an independent parameter whereby the solutions of
problem (1) result in the following parametric repre-
sentation (e.g. comp. [1]):

(VX Ym)s A(Vm))-

Here, x designates a position in Q+ I'. If x, represents
the symmetry determined position of the maximum y,,
of the temperature distribution y, then one must have:

(5)

Let (yo,40) be a solution of problem (1) and let p, be
the principal eigenvalue [5] of the boundary-value
problem of the linear derived operator given by
equation (3):

4

WX0s Vm) = Vm-
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Lp) + 7oW(yo)p + up =0 on Q,

Blo)=0 onT. (6)
Then there exists a single eigenfunction ¢, related to
the principal eigenvalue p, and @, does not change its
sign on Q. If uy > 0, then (y,, 4,) is a stable solution, if
U < 0, then (yy,40) is an unstable solution and if
Uo = 0, then (yy,4,) 1s a critical solution (a critical
point) of problem (1) (comp. [5]). A critical point of
problem (1) represents a particular branching point of
(1) in that a critical point separates a branch of stable
solutions from a branch of unstable solutions, whereas
an ordinary branching point separates branches of
unstable solutions of (1). It is perhaps worthwhile
stating that unstable stationary temperature distri-
butions may never be obtained in an experiment. A
stable or a critical solution of problem (1) may be
analytically continued (uniquely) with respect to the
parameter y,, by the perturbation method proposed in
[11], by defining ¢ as the perturbation parameter:

(7)

£= Ym = Ymo
with y, designating the maximum of y,. The function
4(y.,) may be seen as a ‘response function’ of the system
[8,9]. A critical solution of problem (1) is connected
with an extremum of A(y,) but the inverse of this
proposition does not necessarily hold (comp. [12] and
the discussion of Steggerda’s results by [1]). The
application of the perturbation method proposed by
{11] furnishes the continuation of a given solution
(o0, 40) With respect to ¢ given by equation (7) in the
following form:

Y%, 2) = Yolx) + J(X)e 4 1I(X)e2 + -

’1(8) = }»0 + i{} + %Igz + o (8)
It is easily derived that for a stable solution (y,4,)
holds that:

¥ >0, A>0 (9)

and that for a critical solution (yg, 4,) holds that

y>0, A=0. (10)

This perturbation theory has been worked out com-
pletely elsewhere [13].

Because of the definition of the linear operators L.
and B, one obtains for Ao =0 the unique stable
solution y, = 0 of problem (1) and (y, =0, A, = 0)
may be continued with respect to y,,. Therefore, the
function (y,,) consists of at least one branch emerg-
ing from 4y, = 0, y,,o = 0 such that this branch corres-
ponds to a branch of stable solutions of (1). If a critical
point exists for this branch, then it corresponds to a
maximum of A(y,,),

3. POSITIVE MINORANTS AND MAJORANTS
OF W(y)

For the introduction of minorants and majorants of
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W(y), the following nonlinear boundary-value prob-
lem turns out to be of interest:

L(y) + AMf(y) + dg(») = 0
B(y)=0 (11)

Here, 4 and & are real parameters, L and B are the
same linear operators as in problem (1), f(y) and g(y)
are two real valued functions which——for the sake of
the perturbation method—are supposed to be analytic
in y. For 4 and 4, it is supposed to hold that:

A20 061,
f(y)+6g(y)>0 for 051,

on £,

on I

(12)
(13)

Let (yg.40,05) be a solution of problem (11). On
account of the maximum principle [ 7], one finds that:

(14)

yz0.

yo>0 on Q, Vo200 on Q4+ 7T

and that y, does not have a minimum on € so that y,
possesses a unique maximum y,, on Q + I'. In the
following derivation, & is considered an independent
parameter of problem (11) and the solution (y, A, 8¢) 18
analytically continued with respect to (6 — d,). De-
signating the differentiation with respect to & by
dashes, e.g.:

o2
, A==

s=20 2

Ty

, y

y

it

’hl(
="

etc. (15)

7

d=38q

one obtains the following recursive system of
boundary-value problems by inserting in (11) the
series expansions in (8 — d,) of y and A:

zeroth order

L(yo) + Ao(f(y0) + 80g(¥0)) =0 on Q,
Biyo)=0 on I (i6a)
first order
l:(}") + Ao(fi{¥o) + 00g,(¥o) )Y + Aog(¥o)
+ 2A(f(yo) + 80d(¥9)) =0 on Q,
B(y)=0 on I.(l6b)

The higher orders of the perturbation system may be
obtained in the usual fashion. Because of the symmetry
of problem (11}, the maximum y,, of the solution y is
located at the position x,. The following constraints
are imposed on (y, 4,d):

V(%) =0, y'(x)=0, ... (7

whereby
(18)

If (v, A0, 8p) represents a stable solution of (11), then
there exists a bounded integral operator G which is the
inverse of the linear operator

(L) + o[ f(yo) + Bogy(yo)]u, Bw)) (19)

which occurs in any order {#0) of the perturbation
system (16). If G(x,x%) is the kernel of G, then
Gix,xT} < 0 for any pair of values x, xteQ

Y(Xg,0 = 8p) = yo(Xo) = ¥(Xg,0) = Ypo-
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(comp. [7]). It is therefore obtained for the first order
(16a):

Yx) = —GlAog(yo) + ¥(f(yo) + 80g(¥o))}(X).

(20)
A’ is then determined by the constraint (17) as:

B G(g(y0))(Xo)
® G(f(vo) + og(¥o))(Xo)’

Because of the negativity of the kernel of G and because
of (13), one finds:

G(f(¥o) + Sog(yo))(x) <0

The higher order contributions for the series expan-
sion of y and 4 with respect to (§ —J,) can be found in a
similar fashion. If (y,,40,8,) represents a critical
solution of (11), then the principal eigenvalue of the
operator pair (19) vanishes and the related eigenfunc-
tion u, does not change sign on Q. The value of 4’ is
fixed such that the first order problem (16b) can be
solved:

A= 2n

on Q. (22)

Ao lqd ;
P 0 jsz X uog{¥o) ‘ (23)
5:2 dxug(f(ye) + Sog(¥e))
The integral in the denominator of (23) is nonvanish-
ing on account of 4, # 0onQand onaccount of (13). )’
obtains from equation (16b) as:

V== G(iog()’o)
+ 4 (f(yo) + 60g(yo))) + cup.  (24)
The kernel of G is a generalization of Green’s function.

The constant ¢ in the expression (24} is determined by
the constraint (17):

¢ = G{logro) + F(F(ve) + Boglrol)(xo) (25)
“o(xo)

The higher order contributions for the series expan-
sion of y and A with respect to (6 —d,)can be foundina
similar fashion.

The analytic continuation by regular perturbation
with respect to the maximum y,, of the temperature y
on Q + T makes it possible to investigate for a given
value of y,, appropriately defined functions which are
minorants or majorants of W{y)on theinterval 0 £ y
< y,, only. Returning to the original problem (1), let
W{y) be a function which is known for values of y
with 0 < y < 5. For a given maximum value y,, with
0<y, SV, the functions m(y,y,) and M(y,y,) are
called positive minorant and positive majorant of
W(y) on the interval 0 £y <y, if the following
inequality holds:

0 <m(y,yn) £ W) E My, ym)

for 0Zy<ym (26)

m{y, y.) and M(y, y,,) are chosen such that the follow-
ing boundary-value problems [comp. (1)] have
unique positive solutions:

L)+ Am(,y,)=0 on Q,
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Br)=0 on T, (27)
Ly + AvMOL,y,)=0 on Q,
Buy=0 onT. (28)

Here, 4,,(y,,) and 44,(y,,) are determined by the follow-
ing conditions:

max o(x} = 6(Xg} = Yy, (29)
xeQ+ T
max u(x) = ulXg) = ¥, (30}

xeQd+ T

By varying the parameter y,,, varied minorants
m{y,y,) and majorants M(y,y,) result and one thus
obtains functions A,(y,) and Ay(y,). The following
section is devoted to investigating the relation of the
functions 4,(y,) and ip(y,) to the function A(y,)
which is the response function of the thermodynamic
system and part of the parametric representation (4) of
the solution (y, 1) of problem (1).

Fora given y,, let it be defined on 0 < y < y,, that:

F)y=m(y,v,),
g(y) = Wiy} —miy,y,) 2 0.
Then one obtains for any d with0 < § £ 1:

f(y) + 8g(y)
= (1-0)m(y,y,) + oW(y) > 0.

(31)

(32)

Thus, condition (13) is satisfied. For a §, with 0 < 4§,
< 1, let (o, A0, 00) be a stable solution of (11). Then
one obtains on account of the negativity of the kernel
of G and on account of equations (31) and (32} from
(21):

250 (33)

If {yo, 40, 6) designates a critical solution of (11) for a
8¢ with 0 < §, < 1, then one derives from (23) on
account of (31) and (32) and on account of 4, # 0 on
Q:

A

0. (34)

For 84 =0, the solution (z,4,(y,)) of (27), (29) is
obtained, for d, = 1, the solution (y,A(y,)) of (1)
results. If analytic continuation from (v, 4,(y,)} to
(v, A(yn)) is possible from d =0 to 6 =1 and if this
path leads through stable solutions of (11) only or if it
stays close to critical solutions of (11), then one obtains
from (33), (34):

3
A

For the given value of y,, let it now be defined on
0=y=<y, that:

S(y) = M3, ym),
gly)=Wiy) ~ M(y,y,} £ 0.

Then the following property is found to hold for
0o

F) + 8g(y) = (1—-0)M(y,y,) + éW(y) > 0. (37)
By virtue of (37), condition {13) is fulfilled. For 0 < §,

(36)
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< 1, let {yo, 4y, O,) be a stable solution of (11). Then
one obtains on account of the negativity of the kernel
of G and on account of (36), (37) from equation (21):

A 20 (38)

If (o, A, O9) designates a critical solution of (11) for 0
< 8y £ 1, then one derives from equation (23) on
account of (36), (37) and on account of u; # 0 on Q:

=0 {39)
For 6, = 0, the solution (u, A,(y,)) of (28), (30} is
obtained, for 6, = 1, the solution (¥,A(y,.}} of (1)
results. If analytic continuation is possible from é = 0
to é = 1 and if this path leads through stable solutions
of (11) only, or stays sufficiently close to critical
solutions of (11), then one obtains from {38), (39):

g (Vm) S AVp)- (40)

By varying y,, continuously from y,, =0 till y,, =y and
by varying the minorants m(y,y,) and the majorants
M(y,y,) in a continuous fashion with respect to their
dependence on y,, accordingly, one obtains under the
above assumptions continuous functions 4,(y,,) and
Anel ) Which provide upper and lower bounds of i(y,,)
for any value y,, with0 <y, <

;~M(.Vm) g /(ym) é )"m{ym)' (41)

4. LINEAR POSITIVE MINORANTS AND
MAJORANTS

Functions m(y, y,,) and M(y, y,,) which are linear in
yon0 £ y £ y, and which satisfy equation (26) are of
particular importance because for linear functions, the
problems (27) and (28) can be solved by standard
methods, irrespective of whether L is in the form of an
ordinary or a partial differential operator. In order to
define a pointwise scanning of the given function W(y)
of problem (1} by positive linear minorants and
majorants, the following additional property is
imposed ;

m(ymmvm) = W(ym) = M(ymvym)' (42)

It is by virtue of equation (42) that for a given value of
Ym 0 < y,, £y, a linear minorant and a linear ma-
jorant of W{y)on 0 < y < y,, can be found which—
while satisfying equation {26)- are unique in being
the closest to W(y). The geometrical construction of
the closest linear minorant and the closest linear
majorant for the given value of y,, is straightforward if
the graph of W{y}is given, so that for the construction
of the functions 4,,{y,.) and 4y{y) the actual analytical
expression of W(y) does not need to be at hand (comp.
[&] for examples).

In order to provide an example of how A(y,,) can be
constructed, let it be assumed that W(y) is a mono-
tonely increasing function in y with W(y)> 0 for 0
<y <7y Lety,begivenwith0 < y, £ j. Then it is
possible to find a constant positive majorant M(y, y,,)
= W(y,,). which satisfies {26} and (42). Subtracting
eqution (28) from (1), one obtains, on account of the
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linearity of L and B:
Lu—y) + AuW(y,) — AW (y) =0
Bu-y)=0

on Q,

on I, (43)
Let the symmetry defined position x, of the maximum
ym Of y and u be an interior point. Imposing (5) and (30)

in order to obtain A(y,,) and A,(y,,), one finds at the
interior point X, €Q):

u(Xo) — y(Xo) = 0, (44)
W(y) being increasing in y, one derives that:
W(y) S W(y,) for 0Zy=y,  (45)

On account of the maximum principle for elliptic
operators [7], it is then deduced that one must
necessarily have:

ot (V) S MY m)- (46)
By varying y,, between y,, = 0 and y,, = 7, one is thus

able to derive a continuous function A(y,) which
provides a lower bound of A(y,) for any y, with
0Ly, <7

For a function W(y) with W(y) >0ind < y £ 3,1t
is possible to find a linear ‘closest’ majorant M(y, y,.)
for any value of y,, with0 < y,, < y,such that M(y, y,,)
satisfies equations (26) and (42). For a function W(y)
with W(y)>0in 0 < y < y, there always exists a
subinterval such that a positive linear minorant
m(y, y,,) exists for any y,, from this subinterval, while
m(y,y,,) satisfies (26) and (42). The tangent t(y, y,,) of
W(y) for y = y,, results as:

t(y7 ym) = (y_ym)Wy(ym) + W(ym) (47)
For a function W(y) with W(y) > 0, there always
exists an interval 0 < y,, < y*, y* < y, such that the
tangent 1(y, y,,) [comp. (47)] for any y,, with0 < y, <
y* intersects the W-axis for a positive W-value:

W(ym) = ymWy(ym) >0 for 0 =y, = y*. (48)
For y, with 0 <y, < y*, then there exists—by in-
spection—a linear closest positive minorant satisfy-
ing (26) and (42). On account of the property (48), the
function W(y) may be called ‘concave in a generalized
sense’ [comp. [14]] for 0 £ y < y* and it may be shown
that for a maximum y,, with0 < y, £ y*, the solution
of equation (1) exists and is stable.

Thus, for y, with 0 = y, < y* linear positive
majorants M(y,y,) and linear positive minorants
m(y, vy} of W(y) exists and it is easily seen that the
function (1 - 8)m(y,y,) + W(y) [comp. (32)] and the
function (1-8)M(y,y,) + W(y) [comp. (37)] are
concave in the sense of (48) for 0 < § < 1.Itis therefore
concluded that the expression (41) holds for any y,,
with 0 < y,, < y* y* < J, ie. that the expression

}“M(ym) é j'(ym) é ’lm(ym)

holds on the interval 0 < y,, < y*, where the function
W(y) is concave in the sense of equation (48).
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Fic. 1. Positive minorants and majorants of the function
W(y) = exp(y).

5. A NUMERICAL EXAMPLE

In order to give a demonstration of how the
proposed method of approximation applies, the fol-
lowing problem is investigated:

d?y dy
o by oge TR =0
yy=0, y0) =y, (49)
dy _
dx x=0 B

For this problem, a solution exists in the parametric
form (4) which has been derived numerically by [12,
15]. By using their result, it is possible to test the con-
tinuous upper and lower bounds 4,(v,) and Ay(v,)
which derive from the introduction of appropriate
minorants and majorants. The function W(y)=exp(y)
is concave in the sense of (48) for y with 0 <y < y*
= 1, so that for a given y,, with 0 < y,, < 1, uniquely
defined linear minorants and majorants exist which
satisfy (26) and (42) and which are ‘closest’ to W(y).
Specifically, the closest linear majorant is the secant
s =s(y,y,) passing through W =1 and W(y,)=
exp(Vm), Whereas the closest linear minorant is the
tangent t=1t(y, y,,) for W(y) for y=y,, (comp. Fig. 1).

The problems (27) and (29) and (28) and (30) may be
solved with m(y, v,,) = (¥, yu) M (3. y,,) = s(y,y,,) and
the resulting bounds are designated i,(y,,) ‘tangent’
and A,(y,) ‘secant’ and may be compared with the
exact solution designated A(y,,) ‘exact’ (comp. Fig. 2).
For y, 2 y*, the curve 4,(y,) ‘tangent’ is parallel to
the y,, axis and defined by the value A* derived from
the tangent t* in Fig. 1 (comp. [16]).

W(y) = exp(y) is monotonely increasing in y. Thus,
constant linear majorants M (y, y,) = exp(y,,) may be
used in problem (28), (30) to give a curve of bounds
designated A(y,) ‘constant’ in Fig. 2. By using the
results of [17] for Emden’s equation, convex nonlinear
minorants m(y, v,,) = (y*/y2)exp(y,,) (marked m(y, y,,)
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Alym) “secant”

Amlyml “tangent”

Amlym! cOnvex”

~ My “exact”

FiG. 2. The exact solution i(y,,) and the continuous upper and lower bounds 4,(y,) and Ay,(v,).

‘convex’ in Fig. 1) may be introduced for the de-
rivation——by similarity methods—of improved upper
bounds which are marked 4,(y,) ‘convex’ in Fig. 2.

Finally, it should be emphasized that stable so-
lutions of problem (49) occur only for values of y,,
between y,, = 0 and y,, = 160746, which is related to
the first maximum of the response curve A(y,,) (comp.
[12]). I one recalls that only stabie or critical solutions
of problem (1}are of physical interest, Fig. 2 shows that
the proposed method of approximation provides good
bounds for the physically interesting part of i(y,,). In
particular, good bounds are obtained by a relatively
simple method for the critical values of the parameter 4
(marked A, in Fig. 2), which are of considerable
interest (e.g. Frank-Kamenetzki’s theory of thermal
explosions, comp. [9, 18]).
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A minorant-majorant approximation method for the solution of the nonlinear Fourier equation

UNE METHODE D’APPROXIMATION MINORANTE-MAJORANTE
POUR LA SOLUTION DE L’EQUATION DE FOURIER
NON LINEAIRE

Résumé—Dans une étude de I'équation non linéaire de Fourier par une méthode analytique basée sur la
température maximale y,, comme paramétre de continuation, on montre comment des majorants positifs et
des minorants positifs (qui varient avec y,,) peuvent étre utilisés pour fournir des limites continues supérieures
et inférieures d’une fonction A(y,,) qui gouverne l'intensité de la génération de chaleur au cours d’un certain
processus exothermique. La fonction A(y,,) constitue une propriété caractéristique du probléme car elle
contient 'information d’existence de distribution de température stable, instable ou critique qui résulte du
probléme des conditions aux limites de 'équation de Fourier. De fagon & fournir un test de la méthode
proposée, des limites continues supérieure et inférieure de A(y,,) sont obtenues pour un probléme dont on
connait la solution numérique.

Zusammenfassung— Untersucht man die nichtlineare Fouriersche Gleichung der Wirmeleitung mit Hilfe
der Methode der analytischen Fortsetzung, so 148t sich die maximale Temperatur y,, als Fortsetzungsparam-
eter wihlen. Dann lassen sich von y,, abhingende positive Majoranten und positive Minoranten einfiihren,
durch welche in y,, stetige obere und untere Schranken einer Funktion A(y,) bestimmt werden, die die
Intensitdt der Wirmeerzeugung fiir die untersuchten exothermen Prozesse steuert. Die Funktion A(y,,) stellt
eine charakteristische GréBe des Problems dar, da sie Aussagen enhalt iiber die Existenz stabiler, instabiler
und kritischer Temperaturverteilungen, welche man als Ldsungen des Randwertproblems der Fourierschen
Gleichung erhilt. Um die Giite der vorgesteliten Methode zu demonstrieren, werden in y,, stetige obere und
untere Schranken von A{y,) fiir ein Fouriersches Problem berechnet, dessen exakte numerische Losung
bekannt ist.

MPUMEHEHUE METOIA MUHOPAHTHBIX-MAXOPAHTHBIX AITPOKCHUMALUNA
TIPH PENIEHUU HEJIMHEWHOIO YPABHEHUS ®VPLE

Aunotauna — [IpH aRanH3e HEITHHEHHOrO ypaBHEHHS TEIIONPOBOJHOCTH ®ypbe METOIOM aHAJUTH-
4ECKOro NMPONOJIKEHHUA ¢ MAKCHMYMOM TEMIIEpaTypsl y, B KayecTBe NapaMeTpa NpPOJOJIKEHHA MOKa-
3aHO, KaKHM 00pa3oM NOJIOKHTENbHBIE MaXKOPAaHThI H MHHODAHTBI, H3IMEHSIOUIHECHS C H3MEHEHHEM
napaMeTpa y,, MOXHO HCNONbL30BaTh Ul ONPEAEICHHA HENpPephbIBHBIX BEPXHHX M HHXHHX TPaHHL
dyHkoun A(y,), ONMHMCHIBaMOLIeH HHTEHCHBHOCTb TEIUJIOBBUICJIEHHS B PE3y/bTaTé HEKOTOPOLO 3K30-
TepMHYecKoro npouecca. PyHKUHS A(),) cOmepKHT HHOOPMAUHIO O HAIMYHH YCTOHYHBOIO, He-
YCTORYHBOTC H KPHTHHECKOrO PacnpefcfieHHH TEMNEpaTyphi, MONYYEHHBIX IPH PELICHHH TPaHHYHON
3afayud [s ypaBHenus dypbe. [Ins nposBepkH NPEANOKECHHOIO METOAA ONPEAENICHbl HENPEPHIBHBIE
BEPXHHAEC ¥ HHKHHE rpaHuiuel Gyuxuun A(y,) 3anaun Oypoe, A8 KOTOPOH HMECTCH TOYHOE YHCIICHHOC
peliicHHe.
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